First recall that 82 flo, 7, 9) = o.f(7,9) - floz, 9)+f(o, 29)

Using 82f=0 we write,

9 (5, T) + nf(5, T) = 9 (5, T) + 2 9 c a f (0, T)

Now notice that $g(\sigma_1\tau) = S_1(\Sigma_{g\in G}f(\sigma_1g))(\tau)$ therefore [nf]=0 in $H^2(G_1M) \Rightarrow nH^2(G_1M)=0$.

Let us show that S(fm)=0.

$$S(f(\sigma^i,\sigma^j))(\sigma^k) = \sigma^i f(\sigma^j,\sigma^k) - f(\sigma^i+j,\sigma^k) + f(\sigma^i,\sigma^{j+k}) - f(\sigma^i,\sigma^j).$$

First Suppose that itj>n, if j+k>n then f(oitj,ok)=0=f(oi,oitk)

and $\sigma i f(\sigma i, \sigma^k) = \sigma^i m = m = f(\sigma^i, \sigma^j) \Rightarrow Sf(J^i, \sigma^i, \sigma^k) = 0$.

If j+k < n then $\sigma^i f(J^j, \sigma^k) = 0 = f(\sigma^i+j, \sigma^k)$ and $f(J^i, \sigma^j+k) = m = f(\sigma^i, \sigma^j)$ => Sf(Ji, Ji, Jk)=0. The same reasoning works for j+j<n, this shows that &fm=0.

 $m \rightarrow f_m$ induces a morphism $M^G \xrightarrow{\phi} \ker(S_2)$ now let $m \in \operatorname{im}(T)$ i.e m = Zi=0 oi.v for some VEM. Let us show that fm & im (81).

0 if atban fm (50,06) = let 9 be a 1-cochain recall that (Sizo ov if atb>n

 $\delta_1 g(\sigma^0, \sigma^b) = \sigma^0 g(\sigma^b) - g(\sigma^{0+b}) + g(\sigma^0)$. Defining $g(\sigma^0) = \sum_{i=0}^{Q-1} \sigma^i v$ ue see that 81 g = fm. Therefore ϕ (im(T)) \subseteq im(81) Le obtain a morphism $\overline{\varphi}: M^{G}/_{im} \longrightarrow H^{2}(G,M).$

let us start by snaving that MG -> H2(G,M) is surjective. let he ker(Sz) Let us show that h is cohomologous to f_m where $m = \sum_{j=0}^{n-1} h(\sigma_j^i \sigma_j^i)$.

Now as heker (Sz), S2h(01,05-104) = 01h(01-1,04) - h(01+1-1,04) + h(01,01+4-1)-h(01,01-1)=0

=> h(oi,oj+k-1)= h(oi,oj-1)- oih(oj-102) + h(oi+j-1,ob) setting k=1 we get $h(\sigma^i, \sigma^j) = h(\sigma^i, \sigma^{j-1}) - \sigma^i h(\sigma^{j-1}, \sigma) + h(\sigma^{i+j-1}, \sigma)$

Using this relation now on his i, oi-1) we get hloi, vi) = hloi, vi-2) - vi h(vi-2, v) + h(vi+j-2, v) + vih(vi-1, v) + h(vi+5-1, v) repeating this we get

 $h(\sigma^i, \sigma^j) = h(\sigma^i, 1) - \sigma^i \sum_{\ell=0}^{j-1} h(\sigma^\ell, \sigma) + \sum_{\ell=0}^{i+j-1} h(\sigma^\ell, \sigma) - \sum_{\ell=0}^{i-1} h(\sigma^\ell, \sigma)$

Claim: For any f E ker (82) we can find a cohomologous g such that

```
9(0,1)=9(0,1)=9(1,1)=0.
                                Proof: let f \in kor(\delta_2), define h(\sigma) = f(\sigma_1) and g = f - \delta_2 h then clearly f and g are cohomologous. Now \delta_1 h(\sigma_1 \tau) = \sigma h(\tau) - h(\sigma \tau) + h(\sigma) = \sigma f(\tau, 1) - f(\sigma_{\tau, 1}) + f(\sigma_{\tau, 1})
                                                                                                                                                                                                                                                      = f(5,1)
                                 where the last equality holds as f \in \ker \delta_2. This shows that g(\sigma_1 1) = 0. It is easy to show that for g \in \ker \delta_2 we have g(1,1) = g(\sigma_1 1) = g(1,\sigma).
                               Thanks to the claim we get h(\sigma^i,1)=0\Rightarrow h(\sigma^i,\sigma^j)=-\sigma^i \sum_{i=0}^{j-1} h(\sigma^i,\sigma)+\sum_{i=0}^{i+j-1} h(\sigma^i,\sigma)-\sum_{i=0}^{j-1} h(\sigma^i,\sigma).
                                Now define q = 1 - \cosh \alpha as q(\sigma) = \sum_{j=0}^{i-1} f(\sigma', \sigma). Finally, it can be shown that f_m - h(\sigma_i, \sigma_i) = S_1 q(\sigma_i, \sigma_i). This shows that MG_{imT} \rightarrow H^2(G, M) is surjective.
                                It remains to show that it is injective. To this end suppose that for
                                 arel finz are cohomologous. Then
                                 fmz(01,01) = fmz(01,01) + 819(01,01) = fmz(01,01) + 01.9(01) - 9(01+1) + 9(01)
                                  For j=1 we get fm2(0,0)-fm2(0,0) + g(0,+1)-g(0, = 0,0)
                               Threfore,
T(g(s)) = \( \int_{i=0}^{n-1} \ \sigma^i g(\sigma) = \( \int_{i=0}^{n-1} \ f_{m_1}(\sigma^i,\sigma) - f_{m_2}(\sigma^i,\sigma) + g(\sigma^{i+1}) - g(\sigma^i) = m_1 - m_2. \)
                                 this Shows that MG/imi \rightarrow H^2(G_1M) is injective and finishes the proof.
                          The goal is to show that S(g_m) = 0. Recall that
                     Sq_m(\sigma^i,\sigma^j) = \sigma^i q_m(\sigma^j) - q_m(\sigma^{i+j}) + q_m(\sigma^i) . (*)
First suppose that i+j< n then
                     (*) = \sigma i (\Sigma_{k=0}^{j-1} \sigma^{k} m) - \Sigma_{k=0}^{j+j-1} \sigma^{k} m + \Sigma_{k=0}^{j-1} \sigma^{k} m = 0
                    Now if it j>n then,
                    (*) = 0^{i}(m + _ + 0^{i-1}m) - (m + _ + 0^{i+j-n-1}m) + \sum_{k=0}^{i-1} 0^{k}m
= N(m) = 0.
                                  By the first point, m \mapsto g_m defines a map \ker(T) \to \ker(S_{\Sigma}) \xrightarrow{\infty} H^1(G_1M).
                                  Now let us show that if m \epsilon imD then \epsilon im\epsilon = \epsilon = \epsilon
                                  and g_m = Sn \Rightarrow [g_m] = O \in H^1(G_1M). Therefore the above map induces a map KerT_{jmD} \xrightarrow{\Psi} H^1(G_1M). Let us show that \Psi is injective.
                                Suppose that [q_m] = [q_m] then q_m(\sigma^i) - q_m(\sigma^i) = Soln(\sigma^i) for some n thus q_m - q_m(\sigma) = m^i - m = \sigma n - n \in im D. This shows that \tau^i is injective.
```

It remains to snow that ψ is surjective. Let $f \in \text{Ker} S_1$ define $m = f(\sigma)$ and let us Show that $[f] = [f_m] \in H^1(G_1M)$. As $\delta sf = 0$ we have $\sigma^{i-1}f(\sigma) - f(\sigma^i) + f(\sigma^{i-1}) = 0$ then $f(\sigma^i) = \sigma^{i-1}f(\sigma) + f(\sigma^{i-1})$ $= \sigma^{i-1}f(\sigma) + \sigma^{i-2}f(\sigma) + f(\sigma^{i-2})$ = $\sigma i f(\sigma) + \sigma i - 2 f(\sigma) + _ + f(\sigma) + f(1) = f_m(\sigma)$ This finishes the proof that HILG, M) = KETCT/imD let us show that A is associative => f is a 2-cocycle It is enough to show this at the level of the basis elements. let 9, h, k e G, then $(aeg * ben) * C.e_k = ag(b).f(g,h).eg_h * C.e_k$ = a.g(b).f(g,h).(gh)(c)f(gh,k)eghk on the other hand aeg * (ben * cek) = aeg * (b.h(c).f(h,k)enk = ag(b.h(c).f(h,k)).f(g,hk)egnk so we should show that a.g(b).gh(c).gf(h,k) f(g,hk) = a(g.b). f(g,h). (gh.c) f(gh,k) it is equiv. to showing that

of(h,k). f(g,hk) = f(g,h). f(gh,k) which is exactly the 2-cocycle condition. We define a morphism of K-algebras $\phi: V_{\mathcal{F}} \longrightarrow M_n(K)$ by $\phi(e_{\mathcal{F}}) = \sigma$ and extending it K-linearly. Now to see that $\phi: G_{\mathcal{F}} = G_{\mathcal{F}}$ is an isomore that $\dim_{\mathcal{E}} V_{\mathcal{F}} = |G|^2 = \dim_{\mathcal{E}} M_n K$ and it suffices to show that ϕ is injective. Suppose that $\phi(\Sigma a_{\sigma}e_{\sigma})=\Sigma a_{\sigma}\sigma=0$, by Dedeland's independence lemma. this implies that $a_{\sigma}=0 \ \forall \sigma \Rightarrow \mathbb{Z}_{\sigma\sigma} e_{\sigma}=0$ and ϕ is injective. Suppose that $[f]=[g] \in H^2(G,L)$. That is $f/g \in im \delta_1 \Rightarrow \exists h : G \rightarrow L^{\times}$ such that f/9(5,2) = S1h(0,2) = oh(2).h(02)-!hlo). > f(0,12) = oh(2).h(02)-!h(0).g(6,2). Define $V_f \xrightarrow{\Phi} V_g$ by $e_f \mapsto h(\sigma).e_{\sigma}^g$ where $e_f^{\dagger} e_{\sigma}^{\dagger} = e_{\sigma$ It is clear that o has an inverse and so is bijective. It remains to see that it is a morphism of K-olg.

 $\phi(ae_{1}^{+} * be_{2}^{+}) = \phi(a.\sigma(b).f(\sigma(\tau).e_{\sigma\tau})$ $= \phi(a.\sigma(b).\sigma(\tau).h(\sigma\tau).h(\sigma).g(\sigma(\tau).e_{\sigma\tau})$ $= a.h(\sigma).\sigma(b.h(\tau)).g(\sigma(\tau).e_{\sigma\tau})$ $= a.h(\sigma).e_{2}^{+} * b.h(\tau)e_{2}^{+} = \phi(a.e_{3}^{+}) * \phi(b.e_{2}^{+}).$ $\text{We define the 2-cocycle } f: G\times G \to C^{\times} \text{ as}$ $f(id,id) = f(\sigma,id) = f(id,\sigma) = 1 \text{ & } f(\sigma(\sigma) = -1.$

Then $V_{\zeta} = \mathbb{C} \times id \oplus \mathbb{C} \times_{\overline{0}}$ and the map $V_{\zeta} \longrightarrow H$ given by $C \times id + d \times_{\overline{0}} \longrightarrow C + jd$ is an isomorphism Note that here H consists of numbers of the form a+bi+Cj+dk with $a_ib_ic_id$ EIR & $i^2=j^2=k^2=-1$ and k=1j=-ji.